@juliasilge
@juliasilge@fosstodon.org
youtube.com/juliasilge
juliasilge.com
👩🏼🔧 My model returns predictions quickly, doesn’t use too much memory or processing power, and doesn’t have outages.
Metrics
👩🏽🔬 My model returns predictions that are close to the true values for the predicted quantity.
Monitor your inputs
Monitor your outputs
library(vetiver) laundry_service_monitoring |> vetiver_compute_metrics(date, "week", customer, .pred) #> # A tibble: 30 × 5 #> .index .n .metric .estimator .estimate #> <date> <int> <chr> <chr> <dbl> #> 1 2023-03-05 14 accuracy binary 0.857 #> 2 2023-03-05 14 kap binary 0.708 #> 3 2023-03-09 34 accuracy binary 0.882 #> 4 2023-03-09 34 kap binary 0.767 #> 5 2023-03-16 25 accuracy binary 0.8 #> 6 2023-03-16 25 kap binary 0.525 #> 7 2023-03-23 32 accuracy binary 0.844 #> 8 2023-03-23 32 kap binary 0.685 #> 9 2023-03-30 36 accuracy binary 0.806 #> 10 2023-03-30 36 kap binary 0.611 #> # ℹ 20 more rows
library(vetiver) laundry_service_monitoring |> vetiver_compute_metrics(date, "week", customer, .pred) |> vetiver_plot_metrics()
Deployment of an ML model may cause data and/or concept drift
Examples
Manual 🙂
Reproducible 🤓
Automated 🤩
Documentation at https://vetiver.rstudio.com/
Webinar by Isabel Zimmerman and me for Posit Enterprise Meetup
End-to-end demos from Posit Solution Engineering in R and Python
Post questions at pos.it/slido-CD 🎯